RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017 FIRST YEAR [BATCH 2017-20] MATHEMATICS (Hangurs)

Date : 12-12-2017 MATHEMATICS (Honours)

Time : 11.00 am – 3.00 pm Paper : I Full Marks : 100

(Use a separate Answer book for each group)

Group - A

Group 11		
Answer <u>any five</u> questions from <u>Question Nos.1 to Question Nos. 8</u> . 5 X		
1.	H and K are different subgroups of a group G such that $O(H) = O(K) = p$, where p is prime. Show that $H \cap K = \{e\}$. Deduce that if G has exactly m distinct subgroups of order p , then the total number of elements of order p in G is $m(p-1)$.	3+2
2.	Suppose H and K are subgroups of a group G . Prove that HK is a subgroup of G if and only if $HK = KH$.	5
3.	(i) In a group (G, \circ) , the elements a and b commute and $O(a)$, $O(b)$ are prime to each other. Show that $O(a,b) = O(a) \cdot O(b)$.	
	(ii) Find all elements of order 8 in the group $(Z_{24},+)$.	3+2
4.	If $\alpha = (134)$ (56) (2789) and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1 \end{pmatrix}$ are two permutations on	
	$\{1, 2, \dots, 9\}$, find $\gamma = \beta^{-1}\alpha\beta$. Is γ an even permutation? Justify whether γ can be expressed as a product of transpositions uniquely.	2+1+2
5.	Show that the number of different reflexive relations on a set of n elements is 2^{n^2-n} .	5
6.	A map $f: S \to \square$ is defined by $f(x) = \frac{x}{1- x }$, where $S = \{x \in \square : -1 < x < 1\}$. Prove that f is a	
	bijection. Hence find f^{-1} .	3+2
7.	Let $f: A \to B$ be a function. Prove that (i) if f is left invertible then f is injective.	
	and (ii) if f is right invertible then f is surjective.	3+2
8.	Give an example of a map from \square to \square which is surjective but not injective. Prove that every group of prime order is cyclic.	3+2

Answer any five questions from Question Nos. 9 to Question Nos. 16.

5 X 5

9. If $x, y \in \square$ with y > 0, then prove that $\exists n \in \square$ such that ny > x. Using Archimedean property, show that if a is any real number then $\lim_{n \to \infty} \frac{a}{n} = 0$.

3+2

10. Prove that the union of a finite number of open sets in \square is open. Is it true for an arbitrary collection of open sets in \square ?

4+1

- 11. (i) Prove that $A = \{x \in \square : \sin x \neq 0\}$ is an open set.
 - (ii) For any two subsets A and B of \square , prove that $(A \bigcup B)' = A' \bigcup B'$ where S' denotes the derived set of S.

2+3

12. Prove that each interior point of a set is a limit point of the set but the converse is not true.

5

- 13. (i) If $\{a_n\}$ and $\{b_n\}$ are two real sequences such that $\lim a_n = 0$ and $\{b_n\}$ is bounded then prove that $\lim (a_n b_n) = 0$.
- 3+2

14. State Cauchy's general principle of convergence of a sequence $\{u_n\}_n$.

(ii) Prove or disprove: Every bounded sequence is convergent.

Using Cauchy's criterion of convergence, examine the convergence of the sequence $\{u_n\}_n$ where

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

2+3

15. If for a sequence $\{x_n\}$ of real numbers, $\lim_{n\to\infty} x_{3n-2} = \lim_{n\to\infty} x_{3n-1} = \lim_{n\to\infty} x_{3n} = \ell(\in \square)$ then prove that $\{x_n\}$ is convergent. Find its limit.

5

16. Let $S \subset \Box$ and $f: S \to \Box$. Let $a \in S'$, the derived set of S. If $\lim_{x \to a} f(x) = \ell$, prove that $\lim_{x \to a} |f(x)| = |\ell|$. Give an example to show that the converse is not true.

4+1

Group - B

Answer any five questions from Question Nos. 17 to Question Nos. 24.

 5×5

17. Show that the equation of the line joining the feet of perpendiculars from the point (d,0) on the lines $ax^2 + 2hxy + by^2 = 0$ is (a-b)x + 2hy + bd = 0.

5

- 18. Find the condition that the straight line $\frac{l}{r} = a\cos\theta + b\sin\theta$ may touch the circle $r = 4c\cos\theta$.
- 5
- 19. Show that the conics $ax^2 + 2hxy + by^2 + 2gx\cos^2\alpha + 2fy\sin^2\alpha + c = 0$, where α is a parameter, always pass through two fixed points, provided $g^2 f^2 > c(af^2 + 2hfg + bg^2)$.
- 5
- 20. Show that the locus of the pole of the line joining the extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$.
- 5

5

5

5

5

- 21. Show by vector method that the points P(1,5,-1), Q(0,4,5), R(-1,5,1) and S(2,4,3) are coplanar.
- 22. By vector method prove that sin(A B) = sin A cos B cos A sin B.
- 23. Solve the vector equation $t\vec{r} + \vec{r} \times \vec{a} = \vec{b}$ where \vec{a} and \vec{b} are given vectors and t is a given scalar. 5
- 24. Find shortest distance between the lines determined equations 3x-4y-z+5=0=3x-6y-2z+13 and 3x+4y-3z+2=0=3x-2y+6z+17.
- Answer any five questions from Question Nos. 25 to Question Nos. 32. 5×5
- 25. Obtain the differential equation of the system of confocal conics $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$ where λ is an arbitrary parameter and a, b are given constants.
- 26. Find an integrating factor of the differential equation $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$ and using this integrating factor solve this equation. 2+3
- 27. Show that if y_1 and y_2 are solutions of the differential equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x alone and $y_2 = y_1 z$, then $z = 1 + a e^{-\int \frac{Q}{y_1} dx}$, a being an arbitrary constant. 5
- 28. Solve the following differential equation by the method of variation of parameters:. $\frac{d^2y}{dx^2} + y = \cos ec x.$ 5
- 29. Reduce the differential equation $y^2(y-px) = x^4p^2$ to Clairaut's form by the substitution $u = \frac{1}{x}$ and $v = \frac{1}{v}$ and find its complete primitive and its singular solution, if any. 2 + 3

30. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, λ being the parameter.

31. Solve the following differential equation using the method of undetermined coefficients:

$$\frac{d^2y}{dx^2} - 9y = x + e^{2x} - \sin 2x.$$

5

32. Solve the following differential equation by transforming it to a linear equation with constant coefficients: $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}.$

5

____×___